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Abstract
The distribution of the local density of states (LDOS) in quasiperiodic photonic
crystals (QPCs) and the total density of states (DOS) are studied. The
distribution of the LDOS shows that it has the same rotational symmetry as
the sample. Furthermore, the regions of lowest LDOS and the change of
the minimal values of the LDOS with the alteration of the dielectric volume
fractions are identified. Meanwhile, the coincidence of gaps displayed in
transmission and DOS spectra indicates that QPCs possess absolute gaps for
TM polarized modes, the E field is along the axis of the cylinders and the H
field is in the 2D plane.

Photonic band-gap (PBG) material, since first proposed by Yablonovitch [1] and John [2], has
attracted considerable attention [3–5]. A great deal of theoretical and experimental effort [6, 7]
has been devoted to this field. One of the early motivations for the study of photonic crystals
is their potential for the control of electromagnetic radiation from quantized sources [1]. The
suppression of spontaneous emission, as we know, is important in keeping a system in excited
states and can result in the reduction of noise in optoelectronic devices. However, spontaneous
emission is not an intrinsic property of molecules. It relates closely to the local density of states
(LDOS) [8, 9]. So, having a clear picture of the distribution of LDOS is important for the use of
photonic crystals. At the same time, the distribution of the LDOS relates closely to the structure
of the sample. It may be an effective means in the analysis of structure’s symmetry. Meanwhile,
in most cases the photonic gap is indicated by corresponding transmission or reflection spectra.
Low transmission regions are generally considered as the gap. However, the dependence of
transmission on the incident direction makes this criterion ambiguous. Therefore, the density
of states (DOS) is more accurate than transmittance in deciding the gaps of photonic materials.

Various methods have been employed in the calculation of DOS [10–13]. However, little
has been reported on the distribution of LDOS in a finite size photonic crystal. Recently,
Asatryan et al [14] have extended the exact formalism of multipole expansions to construct
a Green function G(r, rs, ω) of finite-sized two-dimensional photonic crystals and calculated
the LDOS and DOS of it. They obtained a clear picture about the distribution of the LDOS
inside periodic photonic crystals. Meanwhile, owing to the anisotropy, the gap shown in the
transmission spectrum is quite different from that in the DOS spectrum; quasiperiodic photonic
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Figure 1. (a) Octagonal and (b) dodecagonal quasicrystal.

crystals (QPCs) [10, 15–18] are quite different in many aspects from periodic ones. However,
LDOS and the relation of the gaps shown in transmission and DOS spectra of QPCs have
not been studied. They may have some interesting features. In this paper, we calculate the
LDOS and DOS as well as transmission spectra of octagonal and dodecagonal QPCs using
the multiple-scattering methods [19]. We find that the distribution of LDOS shows the same
rotational symmetry as the sample. Meanwhile, the regions of the lowest LDOS are recognized.
In addition, the gaps shown in transmission and DOS spectra are almost coincident, especially
for dodecagonal quasicrystal. From this we can affirm that these structures possess absolute
gaps for TM polarized modes whose E field is along the axis of the cylinders and H field is in
the 2D plane.

The octagonal and dodecagonal QPCs are shown in figure 1. They are formed by placing
dielectric cylinders with circular cross sections in the vertices of two-dimensional octagonal
and dodecagonal quasiperiodic lattices [16–18], respectively. The octagonal quasiperiodic
pattern is tiled by squares and rhombuses (with an acute angle of 45◦) of equal side length
a = 11.0 mm. The dielectric constants of the cylinders and their background are 8.9 and 1.04,
respectively. The dodecagonal quasiperiodic pattern is tiled by squares and regular triangles
of the same side length a = 5.0 mm. The dielectric constant of the cylinders in dodecagonal
QPCs is 8.5 and that of the background is the same as the octagonal one.

In our simulations of transmission spectra, we assume that the incident beam passes
through a slit with a width of w = 4a, which is positioned in front of the sample with a
distance of 5a between the centre of the slit and the surface of the sample, and then illuminates
the sample. In this case the incident field can be obtained from the Kirchhoff integral formula.
In two dimensions, for a plane wave exp(ikx) incident from x < 0, the diffracted wave in
the region x > 0 arising from a slit centred at the origin with an opening of width w in the y
direction is given by

uinc(x, y) =
(

k0

4

) ∫ w/2

−w/2
dy ′

[
H0(k0ρ

′) + i
x

ρ ′ H1(k0ρ
′)
]

(1)

where ρ ′ = √
x2 + (y − y ′)2, and Hm is a Hankel function of the first kind. A generalized

transmission coefficient is defined as the ratio of energy flux to that of the incident wave at
θ = 0,

T = ∣∣1 +
√

(2π/k0w)eiπ/4 fs(0)
∣∣2

(2)

where fs(0) is the total amplitude at θ = 0 in the far field, which can be calculated by a
multiple-scattering method.
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Figure 2. Distributions ofπc2ρ/2ω versus position of the two-dimensional octagonal quasiperiodic
photonic crystal at two frequencies (a) 7.0 GHz and (b) 10.0 GHz, which locate within the high
and low transmission regions, respectively, and (c) the magnitudes of the LDOS at 10 GHz along
the x axis of samples with three volume fractions of 14.5% (solid curve), 17.4% (dashed curve)
and 20.6% (dotted curve).

In the calculation of LDOS and DOS, the source is an infinite line antenna that is parallel
to the axes of the cylinders. The LDOS in the sample can be written as

ρ(r, ω) = − 2ω

πc2
Im[G(r, rs, ω)] (3)

where G(r, rs, ω) is the electromagnetic Green function with a source at location rs and
observation point at r . ω is the angular frequency of the electromagnetic wave which is
radiated by the line source, and c is the velocity of light in vacuum. The total DOS ρ(ω) of
the two kinds of QPCs is defined to be the weighted average of the LDOS over the basic cell
of the QPCs:

ρ(ω) = 1

s

∫ ∫
ε(r)ρ(r, ω) dx dy (4)

where s is the area of the basic cell.
The distribution of the LDOS in octagonal QPCs is shown in figure 2. In our sample

there are 145 cylinders and dielectric fraction is 14.46%. Figures 2(a) and (b) are depicted
at two frequencies, 7.5 and 10.0 GHz, which locate in the band and gap, respectively. From
figure 2(a) we can see that the LDOS is regularly modulated by the cylindrical scatterers. It
possesses the same rotational symmetry as the sample itself. In addition, the LDOS within the
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Figure 3. The distribution of πc2ρ/2ω versus position of the two-dimensional dodecagonal
quasiperiodic photonic crystal at two frequencies (a) 12.5 GHz and (b) 17.0 GHz, which locate
within the high and low transmission regions, respectively, and (c) the magnitudes of the LDOS at
17.0 GHz along the x axis of samples with three volume fractions of 33.67% (solid curve), 38.01%
(dashed curve) and 42.62% (dotted curve).

cylinders is larger than that of the neighbouring background. The reason for this is that the
harmonic mode will tend to concentrate its displacement field on the region of high dielectric
constant so as to minimize the electromagnetic energy. Meanwhile, figure 2(b) gives the spatial
distribution of the LDOS at the frequency 10.0 GHz which locate within the gap. It is seen
clearly that the LDOS vanishes in the central area and exists only on the outermost circle of the
sample. In order to know quantitatively the distribution of the LDOS in the QPC, we calculate
the LDOS along the x axis, (i.e., y = 0.0, x = −150.0 to x = +150.0). Owing to the high
rotational symmetry property of the octagonal QPC, it reflects approximately the distribution
of the LDOS over the whole sample. The solid line in figure 2(c) shows the results. The LDOS
oscillates and decreases exponentially toward the centre. The oscillation peaks always locate
at high dielectric regions while the troughs are in low dielectric areas. The minimum of the
LDOS occurs in a quite small area which surrounds the central cylinder.

Furthermore, the LDOS of the octagonal QPCs is simulated with different dielectric
fractions of 17.4% and 20.6%, where the photonic gap exists, respectively. As shown in
figure 2(c), there is little change of minimal values of the LDOS with increasing the volume
fraction of scatterers.

Figure 3 is the distribution of the LDOS in the dodecagonal QPC whose volume fraction
is 33.67% and the first gap locates from 15.36 to 20.22 GHz. The corresponding frequencies
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Figure 4. The total DOS (dotted curve) and the transmittance spectrum (solid curve) of octagonal
quasiperiodic crystal (a) and dodecagonal quasicrystal (b).

(This figure is in colour only in the electronic version)

of figures 3(a) and (b) are 12.5 and 17.0 GHz, which locate in the band and gap, respectively.
The major features of the LDOS here are quite similar to that in octagonal QPCs. First, it
possesses 12-fold symmetry. Second, the minimum of the LDOS, as the solid curve shows in
figure 3(c), locates in the low dielectric area inside the central hexagon of the QPC. However,
compared with the distribution of the LDOS in octagonal QPCs, the response of the LDOS
to the volume fraction of the dodecagonal QPC is different. The dashed and dotted curves in
figure 3(c) depict the distribution of the LDOS in the dodecagonal QPCs with volume fraction
38.01% and 42.62%, respectively. It shows that the minimal value of the LDOS increases
slightly with the increase of volume fraction. The reason for this phenomenon is that the
number of the cylinders in the central dodecagon in dodecagonal QPCs is more than that in the
central octagon in octagonal QPCs. Increase of the volume fraction makes the average index
of refraction inside the central dodecagon in dodecagonal QPCs bigger than inside the central
octagon in octagonal QPCs. Therefore, the change of the minimal value of the LDOS with the
volume fraction is obvious in the dodecagonal QPCs.

In order to study the band gap structure of QPCs, the DOSs of them are calculated.
Figures 4(a) and (b) show the transmittance (solid curve) and the total DOS in logarithmic
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scale (dot curve) of the octagonal and dodecagonal QPCs, respectively. The gaps displayed
in transmission spectra are almost coincident with that shown in DOS spectra. This is
different from that of periodic crystals [14], in which the gap shown in the DOS spectrum
is much narrower than that revealed in the transmission spectrum. This is attributed to the
fact that the periodic crystals are anisotropic, and quasicrystals may be more ‘isotropic’ than
ordinary photonic crystals because quasicrystals possess high rotational symmetries compared
to ordinary photonic crystals.

In conclusion, we have studied the distribution of the LDOS and the DOS in octagonal
and dodecagonal QPCs. The distribution of the LDOS is modulated by the dielectric constant.
It possesses the same rotational symmetry as the QPCs. Meanwhile, the region with minimal
values of the LDOS in QPCs and the varying regulation of them with the alteration of dielectric
fraction are identified. These are very useful in the application of them. If QPCs are used
to suppress spontaneous emission effectively, we should decrease the dielectric fraction of
the QPCs as long as the gaps remain. In addition, the coincidence of gaps displayed in the
transmission and DOS spectra indicates that QPCs have an absolute gap for TM modes.
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